
Abstract. Long-distance tunneling is the major mecha-
nism of electron transfer (ET) in proteins. For a number
of years, a major question has been whether specific
electron tunneling pathways exist. This question is still
debated in the literature, because the pathways are not
observed directly, and interpretation of experimental re-
sults on ET rates involves ambiguities. The extremely
small tunneling interactions are difficult to calculate
accurately. Recently, there has been remarkable progress
in the area; however, some problems still remain unre-
solved. The accurate prediction of the absolute rates of
long-distance ET reactions and other biological charge-
transfer reactions is a particularly pressing issue. The
current theoretical calculations indicate that the specific
paths do exist in static protein structures. However, the
protein motions can result in significant averaging of the
spatial tunneling patterns, and it is not clear how accu-
rately subtle quantum interference effects are described
by the present theories. The key to resolving these issues is
to perform accurate, first-principles calculations of elec-
tron tunneling that include the dynamics of the protein.
This paper reviews some of theoretical issues of electron
tunneling dynamics in inhomogeneous organic media.
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1 Introduction

The most remarkable aspect of electron transfer (ET) in
proteins is that it occurs via quantum mechanical
tunneling [1, 2, 3, 4, 5]. Typically, redox centers that
exchange an electron are separated by distances of the
order of 15–30 Å. In vacuum, tunneling over such long
distances would be impossible. In proteins, the inter-
vening organic medium facilitates tunneling by provid-
ing low-lying virtual states which result in the effective
lowering of the tunneling barrier, and the exchange at
physiological rates becomes possible [5]. It is remarkable
that the whole biological energy transduction machin-

ery, of which electron transport is a major part [6, 7], is
based on such a subtle quantum mechanical phenome-
non, given that most of biology does not require
quantum mechanics at all.

For a number of years, a major question has been
whether specific electron tunneling pathways exist in
proteins [2, 3, 4, 5]. This question is still debated in the
literature, because the pathways are not observed di-
rectly, and the interpretation of experimental results on
ET rates involves ambiguities. The extremely small
tunneling interactions (order of 10�1–10�4 cm�1) are
difficult to calculate accurately. Despite remarkable re-
cent progress in the area [8, 9, 10, 11, 12, 13, 14], some
important problems remain unresolved. The accurate
prediction of the absolute rates of long-distance ET
reactions and other biological charge-transfer reactions
is a particularly pressing issue.

On the one hand, the current theoretical calculations
are consistent with the idea of specific tunneling paths [8,
9, 14]; on the other hand, experimental studies have been
reported that seem to indicate that the mutations of
amino acids along the path do not significantly change
the rates of ET. Adding to the puzzlement, the recently
proposed [5] empirical relations for the rates of biolog-
ical ETs, which are based on the averaged characteristics
of the protein medium, such as local density, rather on
the detailed structural data, are reported to agree well
with the experimental data. An attempt to reconcile the
two approaches has been presented recently [15]; how-
ever, the issue remains largely unresolved. In particular,
the possible role of protein dynamics in averaging the
paths is not completely understood yet [16, 17]. Since
the tunneling amplitudes are not directly observed in
experiments, many issues can only be resolved by
performing accurate quantum calculations on realistic
systems that involve the dynamics of the system. This is
a challenging computational problem. The difficulties
are not only purely technical/computational, however.
In general, tunneling in many-electron systems is a
nontrivial physical problem.

This paper reviews some of the theoretical issues of ET
in proteins.We focus on what happens with an electron at
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the transition state of an ET reaction, when it tunnels
through the protein medium. Of our special interest is
the many-electron nature of the phenomenon. The key
approach to be discussed is the method of tunneling
currents [14] developed by the author. Reviews of other
approaches, and topics not covered here can be found
in Refs. [8, 9, 10, 11, 12, 13].1 Two classic reviews in
Refs. [10, 11] discuss in detail earlier theoretical and
experimental work in the field.

Before we begin the tunneling discussion, it should be
mentioned that electron tunneling is not the only pos-
sible mechanism of ET. In some cases, the hopping
mechanism or a combination of tunneling and hopping
is responsible for transfer over long distances. This oc-
curs when sufficient energy is available for direct exci-
tation of an electron/hole to the band of the excited
states. One example of such a mechanism is ET in DNA,
discussed extensively in recent years [13, 19, 20, 21, 22].

2 Tunneling matrix element and tunneling pathways

The majority of ET reactions in proteins are nonadibatic
owing to the weakness of interaction between redox
cites. In this limit, the rate of ET is proportional to the
square of the electronic coupling matrix element TDA

that connects distant redox sites [10, 11]. This matrix
element and the associated tunneling process are the
main focus of the present paper.

The matrix element TDA is a pure electronic quantity.
Usually, in order to express the rate of ET in terms of
the electronic coupling, both Condon and BO approxi-
mations are made (or tacitly assumed). The first
approximation assumes independence of the transfer
matrix element of the medium nuclear configuration –
practically it means that if we calculated TDA at a nuclear
configuration which is not exactly the transition state,
we assume that the transfer matrix element at the tran-
sition state will be approximately the same. The devia-
tion from the Condon approximation are briefly
discussed in Sect. 5.

The BO approximation (for donor and acceptor
states D and A) practically means independence of the
transfer matrix element TDA of the vibrational state of
the medium at which the tunneling transition is taking
place. In other words, in this approximation the elec-
tronic coupling is calculated at a specific fixed nuclear
configuration of the system, disregarding the actual
nuclear motion. The dependence of the rate (but not the
matrix element!) on the vibrational state enters into
theory in this case only in the form of the Franck–
Condon vibrational factors.

In the BO approximation, the wave function of the
system (in the initial state D, or the final state A) is the
product of the electronic and vibrational wave functions,
and the distribution of total energy between electronic and
vibrational degrees of freedom is fixed. Thus, one can
define the energy of the tunneling electron and the corre-
sponding height of the tunneling barrier. As the distance
between donor and acceptor increases beyond some
characteristic distance LBO (LBO is 10–15 Å according to
the estimate in Ref. [18]) the BO approximation breaks
down. When this happens, the energy of the tunneling
electron is no longer a well-defined quantity. The total
energy, electronic plus vibrational, of the quantum state
fromwhich the transition occurs is fixed, of course, but the
distribution of energy between vibrational and electronic
degrees of freedom is no longer fixed and will depend on
the tunneling distance. In this case, the theory of the rate
takes a more complicated form, in which the electronic
coupling depends on the vibrational state of the system
[18]. In this review, we assume the BO approximation and
treat the tunneling coupling TDA as a pure electronic
quantity which is calculated at some fixed nuclear con-
figuration of the system.

Technically, the tunneling coupling in donor–bridge–
acceptor (D–B–A) systems is often described in terms
of the superexchange model, following the steps of
McConnell and Larsson’s early treatment of the prob-
lem [23, 24]. The equivalence of superexchange and
tunneling is discussed, for example, in Refs. [11, 25, 26,
27]. Based on the superexchange model, several methods
for calculation of the electronic tunneling matrix element
have been developed [11, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

We begin with a brief review of these methods and then
move on to discuss the method of tunneling currents, the
main subject of the paper. For a more detailed discussion
of the superexchange methods, and a more complete
reference list of the early work, the reader is referred to a
comprehensive review of the subject by Newton [11].

2.1 Direct method

In this method the matrix element is calculated directly
[11]. Suppose we know two diabatic states jDi and jAi
that correspond to two redox states of the system –
electron on the donor and on the acceptor – and the
configuration of the system is that of the transition state,
i.e. the states have the same energy E0. Then the transfer
matrix element is

TDA ¼
HDA � E0SDA

1� S2
DA

; ð2:1Þ

whereH is theHamiltonian of the system (at the transition
state configuration), HDA ¼ hDjH jAi, E0 ¼ hAjH jAi ¼
hDjH jDi is the tunneling energy, and SDA ¼ hAjDi is the
overlap integral. Typically for long-distance ET, SDA is
very small and therefore can be neglected in the denom-
inator. Equation (2.1) can be used in both one-electron
and many-electron formulations of the problem. This
method has been used in the past for relatively strongly
coupled D–B–A systems, [11, 46].

1In this review we do not cover issues related to activation of the
ET reaction, i.e. how the protein medium reorganizes to achieve a
configuration at which electron tunneling takes place. Among
important aspects here are the nature of the protein medium
reorganization and the entropy of activation, the role of quantum
modes of the medium, control of the reaction by protein dynamics,
and the distance dependence of the reorganization energy and
driving force. We also do not consider in great detail all the
medium dynamic effects, which include both non-Condon and non-
Born–Oppenheimer (BO) effects [18].
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For long-distance tunneling, the potential problems
with the previously described approach are as follows.
First, the diabatic states, in practice, are well defined only
in the region of their localization and perhaps in the bar-
rier region adjacent to it, and are poorly defined in the
region of the other redox site, where the other function is
admixed. In other words, the ‘‘tails’’ of the diabatic states
are not well defined. Therefore, in the region where jDi is
well defined, jAi is poorly defined, and vice versa. Both
HDA and SDA, which are integrals involving donor and
acceptorwave functions over the whole space, are not well
defined then, because of the contribution of the regions
around donor and acceptor complexeswhere either one or
the other function is not well defined. Second, the tun-
neling energyE0 can be determined only approximately. If
so, in Eq. (2.1), the very small matrix element is evaluated
as the difference of two large numbers (notice thatE0 is the
total energy of the system), each ofwhich can be evaluated
only approximately.

2.2 Avoided crossing

In some cases, it is possible to calculate directly the energy
difference between the two adiabatic (i.e. exact) states.
Usually these are the ground state and the first excited
state in the system, which are some mixtures of diabatic
jDi and jAi states owing to their (unknown) coupling TDA.
To extract TDA in this method the parameters of the
system, such as external charges, are varied in such a way
that the two adiabatic states experience an avoided
crossing, and the minimum-energy distance between the
states is determined. This distance is twice the magnitude
of the matrix element TDA.

For long-distance tunneling, the couplings are typi-
cally of the order 10�1–10�2 cm�1 or less. To find the
avoided crossing point with such accuracy is not easy,
at best. (This ‘‘needle in a haystack’’ problem is dis-
cussed in Ref. [44].) Moreover, the excited-state energy
of a large many-electron system needs to be calculated
with impractical accuracy. The method, however, can
be used for calculations of some not very large one-
electron systems [44]. In particular, for relatively small
symmetric D–B–A systems, the calculation of the en-
ergy splitting can be carried out at various levels of ab
initio theory [28, 29, 30]. For symmetric D–B–A sys-
tems, the transition state is well defined by symmetry,
which makes these type of calculations particularly
suitable.

2.3 Application of Koopmans’ theorem

At the SCF level, to determine the splitting of two
adiabatic states, one can rely on Koopmans’ theorem
[11, 28, 29, 30]. In this case, one assumes that there is no
electronic relaxation of the ‘‘core’’ orbitals, and the only
difference in the initial and final electronic state is the
orbital of a single transferring electron. Thus, for
example, for a system with an odd number of electrons,
N , the initial and final (many-electron) states represented
by one Slater determinant will be jDi ¼ jðcoreÞ/di and

jAi ¼ jðcoreÞ/ai, and the two adiabatic states are
jwþi ¼ jðcoreÞ/þi and jw�i ¼ jðcoreÞ/�i, where

/� ¼ ð/d � /aÞ=
ffiffiffi

2
p

: ð2:2Þ

The N � 1 core orbitals are assumed to be the same.
Then, it is an easy matter to show that the splitting of
two adiabatic states jw�i, i.e. the total electronic energy
difference between the two states,

D ¼ ðE� � EþÞ ; ð2:3Þ

is the same as the distance between the energies of one-
electron HOMO and HOMO-1 orbitals (Eq. 2.2) for a
triplet state of a N þ 1 electron system, jðcoreÞ/þ/�i. A
nontrivial fact is that to find the energy splitting of an
N -electron system, one performs (one Self-Consistent-
Field, SCF) calculation on an N þ 1 electron system.
This clever method is limited to symmetric systems, and
is as accurate as Koopmans’ theory is. The method has
been reported to produce reliable results for not very
small electronic couplings, typically greater than 10–
100 cm�1. The importance of electron relaxation effects
has been examined by comparing the results based on
Koopmans’ theorem and those from direct SCF evalu-
ations of the energy splittings between adiabatic states
[28, 29, 30].

In the following sections, we describe an approach to
treat tunneling with the method of tunneling currents, in
which an approximation based on the ‘‘frozen core’’ and
one tunneling electron picture, similar to that assumed in
Koopmans’ theory, is utilized.

2.4 Generalized Mulliken–Hush method

Recently, Cave and Newton [32] proposed the following
method. For some configuration of the system, which is
not necessarily that of the transition state, two adiabatic
states – the ground state and the first excited state – are
calculated. (Any of the available many-electron meth-
ods, including correlated ones, can be used.) In addition,
the dipole moment matrix, lij, is calculated using these
adiabatic states. They assumed then that the diagonal-
ization of the matrix lij is associated with the same
transformation as that which mixes diabatic states into
adiabatic ones. The former is easily found, and the
coupling TDA can then be determined. The method can
be justified using a perturbation theory argument.
Assuming that the system is far from the crossing point,
the adiabatic states are

jW1i ¼ jai þ
TDA

DEab
jbi ð2:4Þ

jW2i ¼ jbi �
TDA

DEab
jai ; ð2:5Þ

where jai and jbi are corresponding diabatic states, and
DEab is their energies’ difference. An assumption has
been made that the overlap between jai and jbi is zero
(see later). With these states the transition dipole
moment l12 is evaluated. If now an additional assump-
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tion is made that the matrix element between diabatic
states lab is zero, the following relation between TDA and
l12 is found:

TDA ¼
l12

Dlab
DEab ; ð2:6Þ

where Dlab ¼ lbb � laa is the difference of dipole
moments in two diabatic states. This difference is
roughly eRab, where Rab is the distance between the donor
and acceptor sites, or can be evaluated more accurately
using Dlab ’ Dl12. This method has a nice feature that
the system does not need to be brought into resonance
to evaluate the coupling. A number of interesting
applications of the generalized Mulliken–Hush (GMH)
method have been reported recently [33, 34, 35].

For long-distance tunneling, both assumptions
Sab ¼ hajbi ¼ 0 and lab ¼ 0 are not necessarily valid.
However, a generalization of the Cave–Newton GMH
method can be used which avoids these assumptions. In
this scheme, three calculations at slightly different con-
figurations are made, and three pairs of functions are
found: jWðnÞi i, n ¼ 1; 2; 3, i ¼ 1; 2. Each of the functions
is approximately

jWðnÞ1 i ¼ jai þ
Hab � EðnÞa Sab

DEðnÞab

jbi ; ð2:7Þ

jWðnÞ2 i ¼ jbi �
Hab � EðnÞb Sab

DEðnÞab

jai : ð2:8Þ

With these functions, three transition dipole moments
are calculated:

lðnÞ12 ¼ lab þ laa
Hab � EðnÞb Sab

DEðnÞab

� lbb
Hab � EðnÞa Sab

DEðnÞab

;

ð2:9Þ
for n ¼ 1; 2; 3. From these three equations, three
unknowns Hab, Sab, and lab are determined and then
the transfer matrix element TDA is evaluated using
Eq. (2.1). For reliability, more than three points can be
examined. The tunneling energy E0 entering Eq. (2.1) is
found approximately by extrapolating the external
parameter, at which three pairs of energies ðEðnÞa ;EðnÞb Þ
were determined, to a point where the energies Ea and Eb
cross, as described, for example, in Ref. [44].

As seen, in this method one avoids the direct evalua-
tion of the matrix elements entering into Eq. (2.1) by
finding them from the calculated transition matrix ele-
ments of the dipole operator. The remarks made earlier
about the potential problems with the evaluation of
Eq. (2.1) apply here as well. In addition, here we rely
upon the accuracy of the evaluation of the adiabatic
states, and assume that the extremely small admixture of
the second diabatic state, which is proportional to TDA, is
accurately represented in our states. These admixed
components, however, appear only in the far tail of the
adiabatic states. It is not clear, a priori, how accurately
this extremely small admixture will be captured by the
usual variational procedures employed in the evaluation
of the adiabatic states, in particularly of the excited state.

2.5 The propagator method

In a one-electron description, a method which is based
on perturbation theory treatment can be used. This
technique grew out of the early work of Larsson [24] and
Siddarth and Marcus [36] and was first applied in
Refs. [37, 38, 39, 40]. In principle, the method can be
generalized to many-electron systems as well [8], but for
large biological systems such treatment becomes imprac-
tical. In the one-electron description, however, the
method can be applied for treatment of very large
systems, such as entire proteins.

The problem is cast in terms of weakly coupled D–B–
A complexes. The donor and acceptor are redox groups
in the protein, and the bridge is the protein itself. The
key property to be evaluated is the electronic propagator
or Green’s function of the protein. The matrix element
has been shown to have the form

T ð0ÞDA ¼
X

ij

VdiGijðEÞVja ; ð2:10Þ

where Vdi and Vja are the coupling matrix elements of the
donor and acceptor orbitals to the nearest atomic
orbitals of the protein, and GijðEÞ is the electronic
propagator between the jiith and jjith atomic orbitals of
the protein,

GijðEÞ ¼ hijðHB � EÞ�1jji ; ð2:11Þ

where HB is the protein/bridge Hamiltonian, i.e. part of
the protein that excludes the donor and acceptor
complexes, and E is the tunneling energy. The problem
of nonorthogonality of the atomic orbitals has been
addressed in Refs. [41], where modifications of Eq. (2.11)
were obtained.

To evaluate Eq. (2.10) for TDA, and to avoid
diagonalization or inversion of big matrices, the sys-
tem can be rewritten as a system of linear equations
with a sparse matrix ðHB � EÞji and solved iteratively
[40]. This procedure can be applied to very large
systems, which can include as many as 106 atomic
orbitals.

The smallness of the coupling V is related to a sen-
sible partitioning of the problem into D–B–A com-
plexes, and a correct choice of donor and acceptor
states [42]. The partitioning, however, is not unique,
and the smallness of the coupling is not obvious, in
particular when the coupling between the D–B–A
complexes is covalent. What makes the perturbation
theory applicable is that the donor and acceptor orbitals
are always delocalized over several atoms of their
respective redox complexes. If both the partitioning and
the zeroth order donor and acceptor orbitals jdi and jai
are chosen correctly, the terms Vdi and Vaj then represent
the coupling of the atomic orbitals of the bridge to
delocalized molecular orbitals. That is, V s are not just
nearest-neighbor interatomic interactions, but those
multiplied by the small coefficients of expansion of jdi
and jai in the atomic basis set of the complex. Thus, for
the perturbation theory to be applicable it is essential
that the donor and acceptor complexes contain several
atoms [42].
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The tunneling problem is equivalent to that of scat-
tering between two localized states jdi and jai, and
Eq. (2.10) is the lowest (‘‘Born’’) perturbation theory
expression for the scattering amplitude [43]. Naturally,
the expression can be generalized and higher-order terms
in V can be included. In practice, however, the inclusion
of such higher terms becomes sensible only if an infinite
number of them can be summed up. (As is usually the
case with perturbation theory, it is either a single low-
order term or an infinite number of terms that makes a
difference.)

As in the scattering theory, the complete series for the
transfer amplitude has the form

T ¼ V þ VGV þ VGVGV þ VGVGVGV þ � � � ð2:12Þ
In applications to the tunneling problem, one can think
that the ‘‘scattering’’ occurs between the initial and final
localized states jdi and jai by the atoms of the protein,
the operator V represents the coupling of the initial and
final states and their coupling to the bridge, whereas G is
the propagator in the bridge, Eq. (2.11). Since typically
there is no direct coupling between initial and final
states, the odd terms in Eq. (2.12) disappear (V then is
equivalent to that in Eq. 2.10).

The summation of all important terms in Eq. (2.12)
results in the following expression for the transfer matrix
element [44]:

TDA ¼
T ð0ÞDA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� R0aaÞð1� R0ddÞ
p ; ð2:13Þ

where T ð0ÞDA ¼ Rda is the lowest-order expression given
previously, and Raa and Rdd are the self-energies of the
Green functions for the tunneling electron in the donor
and acceptor states, respectively, and the prime denotes
a derivative in energy. The corrections captured in
Eq. (2.13) account for the delocalization of the diabatic
donor and acceptor states in the protein medium. The
expressions for self-energies Raa and Rdd have the same
structure as T ð0ÞDA ¼ Rda and can be computed using the

same technique of sparse matrices as for T ð0ÞDA. Calcula-

tions on Ru-modified proteins [2] showed that the new
expression gives results which are nearly identical to
those obtained with exact diagonalization of the Ham-
iltonian matrix, even when intermediate resonances are

present in the medium (in contrast to T ð0ÞDA, which

diverges for such cases). The advantage of the former
method, of course, is that it can be applied to systems
that may be too large for a direct diagonalization.

In proteins, charge transfer can occur via electron
or hole transfer or a combination of both [11]. The
relative contribution of different channels is an
important characteristic of the tunneling coupling. The
separate contributions of hole and electron transfer to
the total amplitude TDA, without explicit calculation of
molecular orbitals of the protein, and without diago-
nalization of the Hamiltonian matrix, can be obtained
with a method described in Ref. [40]. The method
treats the previous expressions for complex tunneling
energies, and uses analytical properties of the tunneling
amplitudes.

The success of the methods described is determined
by the quality of the effective one-electron Hamiltonians
used in the calculation. In practice, semiempirical
extended-Hückel or tight-binding Hamiltonians are
often used, which are simple and efficient, but not very
accurate. Kurnikov and Beratan [45] have explored
construction of more accurate effective Hamiltonians
for proteins based on ab initio calculations.

2.6 Protein pruning

For the biological ET problem, it is not necessary to do
sophisticated first-principles calculations on whole pro-
teins. The tunneling nature of electronic communication
between redox sites makes the size of the protein region
involved in propagating the transferring electron rela-
tively small, i.e. the problem is local. A natural approach,
therefore, is to perform calculations in two stages: first to
examine the whole protein with approximate one-elec-
tron methods, to identify the most important parts of the
protein in order to simplify the system – the procedure
that we call protein pruning [47]; then to proceed with
more accurate many-electron ab initio treatments.

Protein pruning is the method to identify those amino
acids of the protein that are involved in propagation of
the tunneling electron. Several similar strategies have
been proposed to achieve this goal [8, 48, 49, 50, 51]. The
idea is to probe the sensitivity of the electronic coupling
to computer-induced changes in the protein and to
eliminated groups that are not important. A similar idea
of computerized search (artificial intelligence search) was
developed by Siddarth and Marcus [36]. The method
relies upon the efficiency of a one-electron evaluation of
the tunneling matrix element. Such calculations have
been performed on several systems [52, 53, 54, 55, 56].
The pruning procedure naturally leaves intact donor and
acceptor complexes and identifies a number of amino
acids that make up the tunneling bridge between them.
Typically the pruned molecule contains 10–20 amino
acids and redox complexes.

2.7 Tunneling pathways

From the biological perspective, it is important to know
exactly how and where in the protein electron tunneling
occurs [57]. There are two possibilities. If the tunneling
electron is delocalized on a scale larger than a typical
dimension of the protein’s amino acids, (i.e. the scale, or
wavelength, on which the wave function of the tunneling
electron decays, is greater than size of the amino acids)
then, as far as electronic coupling between redox centers
is concerned, the detailed structure of the protein is not
important for its biological function. The protein matrix
can be viewed in this case as an effective medium,
perhaps not totally homogeneous, but lacking detailed
structure, whose only purpose is to lower the tunneling
barrier, and to make long-distance electronic communi-
cation between redox sites possible [4, 5].

However, if the wavelength (i.e. the characteristic
decay length) of the tunneling electron is small, then the
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detailed structure of the protein medium intervening
between redox centers becomes important, the pathways
do exist [2, 57] and a number of fundamental questions
about the role of tunneling pathways in biological
function and their molecular evolution arise [52, 53].

The question of whether or not tunneling paths exist in
proteins is still debated in the literature. This question is
beyond the scope of the present paper, and an interested
reader is referred to recent reviews of the topic [2, 3, 4, 5, 8,
9]. Qualitatively, the wavelength of the tunneling electron
turns out to be of atomic size (i.e. about 1Å), and the
tunneling paths are certainly localized in frozen protein
structures. However, protein dynamics can significantly
reduce the structural effects (see later). This may explain
the reported success of empirical relations for ET rates in
proteins, which ignore the detailed chemical structure of
the protein, yet account for its density inhomogeneity [5].
Also, the existence of these paths may not necessarily
indicate their importance for biological function,
provided ET is not the rate-limiting step [5].

From the theoretical perspective, the nature of the
long-distance electron tunneling process in structured
organic media, such as proteins, and in particular its
many-electron aspect, is interesting regardless of its
biological implications.

The first model of the tunneling pathways, which
viewed them as specific sequences of atoms along which
electron tunneling occurs, was developed by Beratan and
Onuchic [57]. Each path in this model is associated with a
weight, which is calculated as a product of three different
empirical factors–for each transfer through a covalent
bond, hydrogen bond, and vanderWaals contact between
atoms along the path. The tunneling path (or paths) is the
sequence of atomswith the largest weight. Themotivation
of this approach stems from the exponential decay of
tunneling wave functions. Each pathway can be regarded
as a Feynman path, and the weight factors can be
understood as absolute values of their quantum ampli-
tudes. The neglect of the sign of the amplitude is equiva-
lent to the neglect of interference effects. The development
of this simple and practically useful model, which now
includes both interferences and multiple paths, has been
recently reviewed by the authors [8, 9].

3 The method of tunneling currents

3.1 General relations

Detailed information about the tunneling process can be
obtained with the method of tunneling currents [14, 58].
The general idea of the approach is to examine the
dynamics of charge redistribution in a system which is
artificially ‘‘clamped’’ at the transition state, when donor
and acceptor states are degenerate.2

The tunneling dynamics is described by the following
time-dependent wave function:

jWðtÞi ¼ cosðTDAt=�hÞjDi � i sinðTDAt=�hÞjAi ; ð3:1Þ
where jDi and jAi are diabatic donor and acceptor
states, and TDA is the transfer matrix element. The
diabatic states are localized on their respective com-
plexes, but their exponentially small tunneling tails
extend over the whole protein. In both one-electron
and many-electron formulations of the problem the
time-dependence of the wave function is the same. The
periodic change of the wave function from donor to
acceptor state (the wave function ‘‘perestroika’’) results
in periodic variations of charge distribution in the
system. The redistribution of charge is associated with
current. It is this tunneling current that we are focusing
on in this method.

The redistribution of charge in the system during the
tunneling transition can be described in terms of current
density ~jjð~rr; tÞ and its spatial distribution ~JJð~rrÞ. The
appropriate expressions for these quantities are obtained
from the continuity equation,

@q̂q
@t
¼ �div~̂jj~jj ; ð3:2Þ

which for the tunneling state (Eq. 3.1) yields

~jjð~rr; tÞ ¼ �~JJð~rrÞ sin 2TDAt
�h

; ~JJð~rrÞ ¼ �ihAj~̂jj~jjð~rrÞjDi : ð3:3Þ

As expected, the periodic variation of charge distribu-
tion is associated with a periodic time-dependent
current, ~jjð~rr; tÞ. The spatial distribution of current
~JJð~rrÞ, however, remains the same during the dynamic
process. Given also the form of ~JJð~rrÞ, one concludes
that ~JJð~rrÞ is not related to the specific periodic time-
dependence of the wave function (Eq. 3.1), but rather
is a more general characteristic of the quantum
transition between states jDi and jAi. The streamlines
of the current ~JJðrÞ represent the whole manifold of
quantum Bohmian trajectories, which received atten-
tion in the literature recently [60]. The tunneling
transition therefore can be characterized by the current
~JJð~rrÞ.

Alternatively, one can introduce atomic populations
Pa, and corresponding interatomic currents Jab as:

dPa

dt
¼
X

b

jab; jab ¼ �Jab sin
2TDAt

�h
: ð3:4Þ

The spatial distribution of the tunneling current is
described here in terms of the matrix Jab. In this
approach, the total current through an atom is pro-
portional to the probability that the tunneling elec-
tron will pass through this atom during the tunneling
jump.

Both interatomic currents Jab and current density
~JJð~rrÞ provide full information about the tunneling pro-
cess and, in particular, about the distribution of the
tunneling current in space, i.e. about the tunneling
pathways. The previous general relations are valid for
both a one-electron and a many-electron description of
the system.

2To find the transition state, one can use external charges to
simulate a fluctuating electric field within the protein, as described
in Refs. [11,59]. These fields shift the redox potentials of donor and
acceptor complexes and bring them occasionally to resonance, at
which point electron tunneling occurs. The transition state of ET,
i.e. the resonance condition, is obviously not unique
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In the one-electron description, the expressions for
tunneling currents have the following form:

~JJð~rrÞ ¼ �h
2m

wDrwA � wArwDð Þ ; ð3:5Þ

where wD and wA are donor and acceptor diabatic states,
and

Jai;bj ¼
1

�h
ðHai;bj � E0Sai;bjÞ CD

ai C
A
bj � CA

aiC
D
bj

� �

; ð3:6Þ

where ai and bj are indices of two atomic orbitals on
atoms a and b, H and S are the Hamiltonian and
overlap matrices, and CD and CA are the coefficients of
expansion for states jDi and jAi in the atomic basis set
of the system. The total interatomic current between
two atoms, Jab, is a sum of Jai;bj over orbitals of these
atoms.

The sign of the current is associated with its direction
– a positive Jab, for example, corresponds to current
from atom b to atom a. But most importantly, the sign
reflects the quantum nature of currents. Since basis
functions of the stationary states jDi and jAi can be
chosen to be real, all information about quantum
mechanical phases, and interferences, is contained in
the sign of quantum amplitudes. Addition of positive
and negative amplitudes, for example, results in
destructive interference. Tunneling currents, by their
meaning, are quantum amplitudes, and therefore their
signs contain information about interferences in the
tunneling process.

The total current through a given atom is propor-
tional to the probability that a tunneling electron will
pass through this atom during the tunneling jump. The
total atomic current is given by the sum

Jþa ¼
X

b

0
Jab ; ð3:7Þ

where the summation is over positive contributions Jab,
which describe the tunneling current from various atoms
b to atom a. Both the interatomic currents Jab and the
total atomic currents Jþa can be utilized for visualization
of the tunneling process and tunneling pathways. For
example, the magnitude of Jþa can be taken as an
indicator that the atom is involved in the tunneling
process [53].

The information about all tunneling paths and their
interferences is contained in matrix Jab, which describes
the total tunneling flow in an atomic representation.
The analysis of the tunneling flow gives a rigorous
description of where electronic paths are localized in
space. For example, if a specific atomic path exists, one
can find it using the method of steepest descent, i.e.
begin from a donor atom, d and find an atom b1 to
which the current Jb1;d is a maximum, then go to atom
b1, repeat the procedure and find atom b2, etc., until
the acceptor atom a is reached. The sequence of atoms
d; b1; b2; . . . bn; a is the tunneling path. Of course, this
procedure will work only if a single atomic path exists.
Usually, the structure of the tunneling flow is more
complicated and many interfering paths exist simulta-
neously. A more careful analysis of Jab is required in
this case.

Remarkably, both ~JJð~rrÞ and Jab turn out to be related
to the tunneling matrix element:

TDA ¼ ��h
X

a2XD;b 62XD

Jab ¼ ��h
Z

@XD

ðd~ss �~JJÞ : ð3:8Þ

In Eq. (3.8) XD is the volume of space that comprises
the donor complex, and @XD is its surface. These
relations were obtained using the conservation of charge
[58a,b].

In the methods for computing tunneling matrix ele-
ments reviewed earlier, the most significant problem is
that the diabatic states, by their nature, are well defined
only in the regions of the localization of the charge, and
perhaps in the tunneling barrier, but not in the far region
of the other site. As a result, in a volume integral, rep-
resenting the matrix elements such as hAjH jDi over states
D and A, there are major regions (around donor and
acceptor) where one function is well defined, but the
other is not. This can potentially lead to numerical er-
rors. To avoid this problem, in the calculation one would
somehow need to use the region of the barrier only,
where both functions D and A are well defined. This is
exactly what the tunneling current method accomplishes.
The previous expressions for the matrix element involve
only the surface in the region of the barrier, where both
jDi and jAi are well defined. Qualitatively, this is similar
to the transition-state theory, where the rate is evaluated
on the surface dividing reactants and products [61].
Using this technique, extremely small tunneling matrix
elements can be evaluated (Fig. 1).

3.2 Many-electron picture

In a many-electron formulation of the problem, the main
results cited earlier remain unchanged, except that now
the diabatic states jDi and jAi should be understood as
many-electron states, and the operators which act on
them should be written in many-electron form. The
detailed derivations can be found in the original papers
[58], and in a recent review of the method [14]. In the
following we summarize the key ideas.

3.2.1 Calculation of current density.
Hartree–Fock approximation

To calculate the spatial distribution of the tunneling
current Jð~rrÞ one needs first to determine diabatic donor
and acceptor states jDi and jAi, and then to evaluate the
many-electron matrix element given by Eq. (3.3), in
which the current density operator is

~̂jj~jjð~rrÞ ¼ �h
2mi

X

N

i¼1
dð~rr �~rriÞ

@

@~rri
� @

þ

@~rri
dð~rr �~rriÞ

� �

: ð3:9Þ

Here the summation is over all electrons in the system, and
the Hermitian operator should be understood as one
acting on the function on the left-hand side. The states jDi
and jAi can be represented by one or many Slater
determinants, depending on the level act of approxima-
tion used. The derivatives of the above operator act on the
molecular orbitals that make up the Slater determinants.
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Suppose states jDi and jAi are single-determinant
many-electron functions, which are written in terms of
(real) canonical molecular orbitals uD

ir and uA
ir, where r

is the spin index, r ¼ a; b. These are the optimized
orbitals obtained from Hartree–Fock calculations of
states jDi and jAi. Using standard rules for matrix ele-
ments of one-electron operators [62], one can evaluate

the expression for the current ~JJ , Eq. (3.3). The final
expressions, however, are much simplified and some
important physical insights are gained if the molecular
orbitals uA

ir and uD
ir are made biorthogonal [63, 64, 65],

by rotation of these orbitals, one with respect to the
other, in the Hilbert space. In this case, the overlap
matrix of states jAi and jDi becomes diagonal,

huA
irjuD

jri ¼ dijsr
i : ð3:10Þ

Such orbitals are also known as corresponding orbitals,
and have been utilized in the ET problem by Newton
[66], Friesher [46], and Goddard [67] and their co-
workers in the past.

If now jDi and jAi are two such biorthogonalized
states, with p orbitals in a- spin and q orbitals in b- spin,
the expression for currents takes the form

~JJð~rrÞ ¼ � �h
2m
hAjDi

�
X

i;r

1

sr
i

uA
irð~rrÞruD

irð~rrÞ � uD
irð~rrÞruA

irð~rrÞ
� �

;

ð3:11Þ
where

hAjDi ¼
Y

p

i

sa
i

Y

q

j

sb
j : ð3:12Þ

The total current in the system is given as a sum of
contributions from the corresponding orbitals of donor
and acceptor states.

This expression is an obvious generalization of the
one-electron picture. Now, different pairs of corre-
sponding (overlapping) orbitals of donor and acceptor
states contribute to the current density. The smaller the
overlap sr

i between corresponding orbitals in donor and
acceptor wave functions (i.e. the greater the change of an
orbital between the jDi and jAi states), the greater the
contribution of a given pair of orbitals to the current.

Typically, the major contribution to the current is due
to one particular pair of corresponding orbitals, which
describe the tunneling electron. For such a pair the
overlap (si in the denominator of Eq. 3.11) would be
much smaller than for other pairs of corresponding
orbitals3. The orbitals of other (‘‘core’’) electrons just shift
slightly, owing to polarization effects. Their contribution
enters as an electronic Franck–Condon factor in the
expression for the tunneling electron current. This factor
(product of overlaps of individual core orbitals) is the
overlap of the wave functions of the core electrons in the
donor and acceptor states. The idea that the description of
the tunneling process can be reduced to a ‘‘Franck–
Condon dressed’’ one-electron picture was introduced by
Newton, who arrived at this picture in his corresponding
orbitals analysis of the tunneling splittings [11, 66].

The shift of the core orbitals in donor and acceptor
states does not appear to be significant, i.e. their
Franck–Condon factor is of the order of unity. This is a
surprising result since the canonical orbitals of the core
electrons change significantly in donor and acceptor

Fig. 1. Transfer tunneling matrix element calculated
as total flux by Eq. (3.8) for the Ru2þ=3þ–(Gly)5–
Cu2þ=1þ system – two metal complexes connected by a
peptide chain [59]. The distance between donor and
acceptor is about 30 Å. The total flux is shown as a
function of the position of the dividing surface
oriented perpendicular to the Ru–Cu axis

3For example, for the (His)2Cu
þ1=þ2-Cys-(Glu)5-(His)Ruþ3=þ2

system, studied in Ref. [59], the overlap for one pair of tunneling
orbitals is of the order 10�8, while for other pairs of corresponding
orbitals the overlaps are in the range 0.9–1.0
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states [11, 66], which is in line with a significant redis-
tribution of charge in donor and acceptor complexes
upon ET.

In practice, the currents are calculated in terms of the
atomic basis functions. The molecular orbitals u are
found as linear combinations of these functions, and
tunneling currents are calculated according to final for-
mulas given in Refs. [14]. The tunneling matrix element
is evaluated as a surface integral of the current (Eq. 3.8,
Fig. 1).

3.2.2 Interatomic tunneling currents

The many-electron atomic formalism is developed in a
similar way to that of current density. The idea is to
derive kinetic equations for atomic populations that
describe the charge redistribution in the system during
the tunneling transition (Eq. 3.4). The major steps in the
formalism leading to these equations are as follows.

First of all, one needs an operator of the total atomic
population that would correspond to Pa. For this pur-
pose, the Mulliken population operators are used. Let a
set of real functions /mðxÞ, m ¼ 1; . . . ;K, be any partic-
ular atomic set that is chosen for electronic structure
calculation, and jmri, jlr0i . . . etc. are corresponding
atomic spin orbitals. The states belonging to different
electrons will be distinguished by an additional index a,
jmrðaÞi. In terms of these states, for the ath electron the
population operator is written as

p̂pmrðaÞ ¼
1

2

X

K

l¼1
jmrðaÞiS�1ml hlrðaÞj
�

þ jlrðaÞiS�1lm hmrðaÞj
�

: ð3:13Þ

The operator of the total population of the state jmri,
P̂Pmr, is the sum of the above operators over all electrons
in the system:

P̂Pmr ¼
X

N

a¼1
p̂pmrðaÞ : ð3:14Þ

The atomic populations are found by summing the
contributions of all orbitals of a given atom.

Using the population operators, one can now de-
scribe the dynamics of the atomic populations. The time
evolution of the system is described by Eq. (3.1). The
average value of the population of any atomic state jmri
at time t during the tunneling transition is given by

�PPmrðtÞ ¼ hWðtÞjP̂PmrjWðtÞi ; ð3:15Þ

and the rate of change of the population is

d �PPmrðtÞ
dt

¼ � TDA

�h
ðhDjP̂PmrjDi

� hAjP̂PmrjAiÞ sin 2TDAt=�h : ð3:16Þ
One can also evaluate d �PPmr=dt in a different way. For this

purpose, the velocity operator _̂PP_PP mr is introduced:

_̂PP_PP mr ¼
i
�h
½ĤH ; P̂Pmr� : ð3:17Þ

Calculating the average of the right-hand side of
Eq. (3.17) over jWðtÞi should give the same result as
d �PPmr=dt given by Eq. (3.16). One can easily check that

hWðtÞj _̂PP_PP mrjWðtÞi ¼
d �PPmrðtÞ

dt

¼ � 1

�h
hAj½ĤH ; P̂Pmr�jDi sin 2TDAt=�h : ð3:18Þ

Now combining Eqs. (3.16) and (3.18), the kinetic
equations can be cast in the desired form,

d �PPmr

dt
¼
X

l

jmr;lr ; ð3:19Þ

where kinetic coefficients jmr;lr have the meaning of
interatomic exchange currents. Summation over all
orbitals of a given atom results in a kinetic equation of
the form of Eq. (3.4).

The calculations of all matrix elements entering into
the equations is described in Ref. [68], where the explicit
expressions for interatomic currents Jab in terms of the
molecular orbitals of the diabatic states jDi and jAi are
found. Thus, the interatomic current Jab, can be ob-
tained from first-principles calculations. When the ma-
trix Jab is known, the analysis of the tunneling pathways
and the calculation of the transfer matrix element TDA

can be carried out as described in the previous section.
In the Hartree–Fock approximation, the expressions

for interatomic tunneling currents Jab in terms of the
molecular orbitals of donor and acceptor states were
obtained in Ref. [68]. These expressions, in the case of a
nonorthogonal atomic basis, although straightforward
for numerical implementation, are quite complicated,
and therefore are difficult to deal with practically. The
main problem is that in the formally exact Hartree–Fock
expressions for interatomic currents, the proper tunnel-
ing current contributions are mixed with the local
polarization currents of the core orbitals. While the
significance of the latter has not been clarified, this
mixing rendered the interatomic current formulation
complicated, and was a major obstacle in practical
implementation of ab initio interatomic currents. A
significant simplification can be achieved, however, if the
one tunneling electron approximation (see later) is used.
In the one tunneling electron approximation, we neglect
the polarization currents, assuming the core orbitals do
not change at all, thereby simplifying the formalism [69].

One interesting example of the application of the in-
teratomic tunneling currents [70] is shown in Fig. 2. The
many-electron SCF implementation of the one tunneling
electron approximation is utilized here to study electron
tunneling in a Ru-modified protein, the system in which
an electron needs to tunnel between two strands of the
protein via hydrogen bonds. The details of the imple-
mentation of the one tunneling electron approximation
can be found in Refs. [69, 70].

Practically, the concept of interatomic currents is a
most useful one in describing tunneling in such complex
systems as proteins. One should keep in mind, however,
that this concept is as unambiguous as the concept of
individual atoms in the protein is. As is well known,
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because of the overlaps of atomic orbitals, the separa-
tion of individual atoms in a molecule is not uniquely
defined. Within this ambiguity, the interatomic currents
are not uniquely defined as well. Here we presented
description that is based on the Mulliken separation
technique, which allows a complete theory to be devel-
oped [68]. Obviously, other separation procedures would
result in slightly different interatomic currents. (The
degree of variations due to this ambiguity has not been
carefully examined yet. To a large extent, this is a purely
theoretical issue, since the individual currents, as well as
individual tunneling paths, are not directly observed or
quantified.) What remains unique, however, is the total
current through the system, which according to Eq. (3.8)
is equal to the tunneling matrix element, a unique
quantity for a given system, and a given transition. Thus,
the tunneling matrix element calculated by the technique

of interatomic currents does not depend on the separa-
tion scheme used to define interatomic currents; how-
ever, the currents themselves can vary (we expect
slightly) with the separation technique.

4 Many-electron aspects

A number of interesting issues are related to the many-
electron nature of the problem [11]. Can one specific
orbital represent a tunneling charge, and, if so, how is such
an orbital found? A naive guess, based on Koopmans’
approximation, is that it is the canonical HOMO of the
system. The electronic relaxation effects are not taken into
account in this picture. We showed that in fact if such a
pair of orbitals exists, it should be found in a specific
(biorthogonalization) procedure, and the resulting orbi-
tals are corresponding orbitals rather than the usual
canonical ones. This picture is valid, however, only in the
Hartree–Fock approximation. Can the tunneling event
(i.e. tunneling dynamics of the many-electron system) be
correctly described byHartree–Fock wave functions? The
tunneling charge can polarize the background electrons as
it moves through the background of other electrons of the
protein. Thus, the tunneling should be more properly
described in terms of a ‘‘polaron-like’’ structure. To
account for these (correlation) effects, one needs to go
beyond Hartree–Fock methods.

4.1 One tunneling electron approximation
and polarization effects

The total current in Eq. (3.11), is a sum of the current
due to tunneling charge per se, and to polarization
effects. In the Hartree–Fock approach, all electrons in
the systems are treated on equal footing and, therefore,
the expressions for both tunneling and polarization
currents are similar in structure. The major contribution
to the current however is due to one particular pair of
orbitals, which describes the tunneling electron. The
orbitals of other (‘‘core’’) electrons just shift slightly,
owing to the polarization interaction with the tunneling
charge, and their contribution to total current can be
neglected. The net core orbitals’ contribution therefore
enters only as the electronic Franck–Condon factor [66]
in the expression for the tunneling electron current, as
explained in more detail later.

The relative stability of the core orbitals suggests a
simple approximation in which only one pair of tun-
neling orbitals and a corresponding one tunneling elec-
tron (or hole) is considered, while the rest of the orbitals
is assumed to be frozen. In this approximation, the two
redox states have the form

jDi ¼ juD
0 ; core

DijAi ¼ juA
0 ; core

Ai ; ð4:1Þ
where juD

0 i and juA
0 i is a pair of tunneling orbitals, and

the jcorei represent the rest of the biorthogonal orbitals,
which remain practically unchanged in the transition. In
the context of the calculation of tunneling splittings,
such a picture has also been considered by Newton and
coworkers [11, 66].

Fig. 2. Distribution of interatomic tunneling currents in a (His126)
Ru-modified azurin [3] system. The donor (Cu1þ) and acceptor
(Ru3þ) are coupled by two protein strands, and an electron has to
jump from one strand to the other in the reaction using hydrogen
bonds between the strands. The identified pathway shows how this
happens [70]
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If such an approximation is adopted the tunneling
current density takes the form

~JJð~rrÞ ¼ � �h
2m
hDjAið0Þ uA

0 ð~rrÞruD
0 ð~rrÞ

�

�uD
0 ð~rrÞruA

0 ð~rrÞ
�

; ð4:2Þ
where

hDjAið0Þ ¼ hcoreDjcoreAi ¼
Y

i6¼0
si : ð4:3Þ

Rigorously speaking, in the one tunneling electron
approximation the core part of the wave functions
should be considered unchanged, or frozen, and there-
fore the overlap should be exactly equal to unity. We,
however, will use both the rigorous form and a ‘‘semi-
rigorous’’ form of one tunneling electron approxima-
tion, where the overlap hcoreDjcoreAi is allowed to be
less than 1. The reason for this is discussed later.

The individual pairs of the core orbitals do not con-
tribute to tunneling current density per se, because juD

i i
and uA

i i (i 6¼ 0) are practically the same. Moreover, the
core orbitals are localized; therefore the contribution
to current is due to a small number of such orbitals.
Yet, their overall indirect contribution to total current,
in the form of the electronic Frank–Condon factor,
hcoreDjcoreAi may be substantial. Indeed, the total
overlap of the two cores is a product of a large number
of individual core orbitals Eq. (4.3). Each overlap si in
Eq. (4.3) for i 6¼ 0 is close to unity; however, the product
involves a large number of such terms, and therefore
may differ substantially from unity. For example, in the
examples that we considered, this term typically ranges
from 0.8 to 1. We do not exclude, however, that in some
cases the core overlap could be significantly smaller.

The considerations presented suggest that the one
tunneling electron approximation can be used in long-
distance tunneling calculations. There is also a more
fundamental argument in favor of such an approxima-
tion, as described later.

4.2 The limitation of the SCF description
of many-electron tunneling

The expression for currents, and therefore for the matrix
element TDA, Eq. (3.8), is given by the sum over pairs of
corresponding orbitals, i ¼ 0; . . . N . Each of the terms
has the following structure:

Ji ¼ hDjAiðiÞhuD
i jĴJ juA

i i ; ð4:4Þ

where the first factor is the product of pairwise overlaps
of all orbitals except for the ith one, and the second
factor is the matrix element taken over the ith pair of
orbitals. As is seen, the first factor is an electronic analog
of the Frank–Condon overlap, which is given here by

hDjAiðiÞ ¼
Y

j 6¼i

huD
j juA

j i : ð4:5Þ

For this form of the matrix element to be correct, a
specific separation of dynamic timescales should exist in

the system. Namely, as Eq. (4.4) suggests, the interaction
associated with the mixing of the ith pair of orbitals
should be much weaker (and therefore slower) than that
of other orbitals. Such is the case, for example, in
nonadiabatic proton transfer, where the transfer matrix
element has exactly the same form [72]:

TDA ¼ hvf jviihf jV jii : ð4:6Þ
Here the first term is the overlap of vibrational
functions, and the second term is the matrix element of
electronic interaction V between two electronic states.
Equation (4.6) is obtained only for a weak (nonadia-
batic) electronic interaction, i.e. for small V [71]. The
mixing of two vibrational states vi and vf in the same
electronic state would occur on a much shorter time-
scale, compared to that of the weak interaction V . That
is the dynamics of mixing by V is slow.

Taking this analogy literally, one has to assume that
in Eq. (4.4), the mixing of the ith pair of orbitals juD

i i
and juA

i i should be much slower than that of the other
orbitals. In the Hartree–Fock SCF picture, however, all
orbitals are equivalent, and in the general SCF expres-
sion for current (Eq. 3.11) all enter on an equal footing,
or in a symmetric fashion. The symmetric form of
(Eq. 3.11) makes it impossible that the requirement of
timescale separation be satisfied for all pairs of orbitals i.
This is obviously a general limitation of the SCF pro-
cedure. The only possibility for the SCF expression
Eq. (3.11) to be correct is to have only one specific term
numerically dominating the others. In this case, the
small terms would formally violate the requirement of
timescale separation, but they will be small anyway.

In our case, there is one special pair of tunneling
orbitals which indeed has a timescale of mixing much
different from (much slower than) the rest of the system.
Only one pair of orbitals, juD

0 i and juA
0 i, corresponds to

a significant redistribution of charge in the system and
therefore has a small overlap, and therefore weak
interaction (an equivalent to term hf jV jii in Eq. 4.6).
The rest of the orbitals, which we call the core orbitals,
experience only weak polarization shifts upon charge
transfer in the system, they have close to unity overlaps,
and therefore have very a short timescale of mixing
(which is equivalent to the hvf jvii term in Eq. 4.6). For
the tunneling pair of orbitals the requirement of time-
scale separation is satisfied, and the contribution has the
expected form of Eq. (4.6):

J0 ¼ hDjAið0ÞhuD
0 jĴJ juA

0 i : ð4:7Þ

For all other pairs of orbitals, the separation of
timescales is not satisfied. On this basis, it is proposed
that all other terms in the current expression (Eq. 3.11)
should simply be dropped. And if they cannot be
dropped, because their contribution happened to be
large, the Hartfree–Fock description is not applicable at
all in this case.

In the numerical examples considered, we saw that
indeed there is one pair of orbitals that mostly contrib-
utes to the currents; however, the contribution of other
orbitals is not always completely negligible. Since the
accurate calculation of tunneling orbitals is a numerical
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challenge, we cannot rigorously prove that the domi-
nance of one pair of orbitals is always a rule. However,
on the basis of the timescale separation argument, and
taking into account the results of calculations on model
systems [59], the approximation based on Eq. (4.7), in
which only one pair of orbitals contributes to the tun-
neling transition and the rest experience only a weak
polarization shift, appears to be the most reasonable
form of theory.

In this case, one can think that only one electron (or
hole) is transferring, and the other electrons respond via
polarization. The tunneling electron contribution to the
overall transfer matrix element is given by the huD

0 jĴJ juA
0 i

term and the polarization by the hDjAið0Þ term in
Eq. (4.7). It is this approximation that we refer to as the
one tunneling electron approximation. If the core orbi-
tals are completely fixed, then their overlap is unity, and
the states that we are dealing with are similar to those
assumed in Koopmans’ theory (Sect. 2.3).

4.3 Correlation effects. Polarization cloud
dynamics. Beyond Hartree–Fock methods

When an electron tunnels through the protein medium, it
moves in the sea of other electrons. The tunneling
potential is, to a large extent, due to interaction of the
tunneling electron with other electrons in the medium.
There is also an opposite effect, of course: the polarization
of the background electronsby the tunneling electron. The
energy of the tunneling electron, its tunneling velocity,
and tunneling timescale [27, 71] are not much different
from those of the valence electrons of the medium. This
means that reorganization of these electrons will be quick
enough to dynamically respond to a moving tunneling
charge. Hence, as the tunneling electron moves through
the protein, there is an electron polarization cloud that
moves together with the tunneling charge. The compound
nature of this tunneling quasiparticle object is rather
complex. The virtual inseparability of the tunneling
electron from those in the polarization cloud owing to
the electron exchange effect (i.e. tunneling electron, as it
passes an atom of the medium, can exchange with the
electrons of that atom) adds to the complexity of the
phenomenon. How can one quantitatively describe such a
complex tunneling object?

At the SCF level of description of jDi and jAi states,
the effect of the polarization cloud moving together with
the tunneling charge is not captured. The latter is obvi-
ously due to dynamic correlation between electrons in
the system, which is not present at the SCF level.

To explore the significance of these correlation effects
and to estimate the accuracy of Hartree–Fock calcula-
tions, one needs to modify the description of jDi and jAi
states and to include relevant excited states that corre-
spond to a tunneling electron/hole localized on the
intermediate atoms of the medium, with other electrons
adjusted to it. (Notice that these are not the usual virtual
states for superexchange coupling between donor and
acceptor. Most of these interactions are already included
in the Hartree–Fock treatment of jDi and jAi states!)
The idea of what needs to be done can be demonstrated

in a model which has one ‘‘linear’’ tunneling path, and
schematically can be described as D–b1–b2–b3–. . .bn–A,
such as the peptide model (bpy)2Ru(III)His–(Gly)n–
CysCu(I)His2Met studied in Ref. [59].

The Hartree–Fock calculation deals with two diabatic
SCF (single-determinant) states: jDi and jAi in which the
charge is localized on the donor and the acceptor,
respectively. The deficiency of this description is that in
these states there are no configurations present that
correspond to a tunneling electron/hole being localized
on the bridge elements bðiÞ with all other electrons tuned
to it. Obviously a one-determinant description of jDi
and jAi states is not sufficient if the previously described
picture of the polarization cloud is to be included in the
calculations. Thus one needs to go beyond the single-
determinant Hartree–Fock description of jDi and jAi.

The relevant additional states (or rather additional
Slater configurations) can be found in standard SCF
ground-state calculations by placing an external charge
in the vicinity of each of the bridge elements bðiÞ, which
will localize a tunneling electron on the bridge elements
bðiÞ. The configurations determined in this way repre-
sent, of course, excited states, which will only virtually
be present in the dynamics. What is needed is not the
exact knowledge or specification of these excited states,
but rather relevant configurations, which will be in-
cluded in the description of the correct diabatic donor
and acceptor states. Details of how these configurations
are obtained are not important, since they are going to
be used just as the basis function for the description.
What is important is that this basis spans the whole
physically important space.

For each bridge element bðiÞ, a corresponding SCF
state jbðiÞi can be determined. Thus in addition to the
usual SCF states Di and jAi one has states jbðiÞi,
i ¼ 1; . . . n. (In the case of the Ru(Gly)5Cu peptide sys-
tem n is about 20.) These are relevant one-determinant
configurations that now need to be combined to obtain
correct (multideterminant) diabatic states for donor and
acceptor. These correct diabatic states will be called jDi
and jAi, respectively (in contrast to their one-determi-
nant SCF approximations jDi and jAi). The appropriate
combinations (i.e. coefficients of expansion)

jDi ¼ CD
D jDi þ

X

i

CD
i jbðiÞi ð4:8Þ

jAi ¼ CA
A jAi þ

X

i

CA
i jbðiÞi ð4:9Þ

can be found by diagonalizing the corresponding
Hamiltonian matrix, that results from the usual varia-
tional procedure. All CD=A

i coefficients are expected to be
very small, of course.

After finding corrected donor and acceptor states, the
calculations can proceed in a standard way. The object
of the calculation is the tunneling current,

JðrÞ ¼ �ihAjĵjðrÞjDi; ð4:10Þ

where ĵjðrÞ is the tunneling current operator (Eq. 3.9). In
a Hartree–Fock calculation one would have the matrix
element calculated between states jDi and jAi. Now, the
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tunneling current is reduced to a sum of pairwise
currents between states D; bð1Þ . . . bðnÞ, and A of the type

Jkl ¼ CD
k CA

l hbðkÞjĵjðrÞjbðlÞi : ð4:11Þ
It is expected that the largest contribution will come
from sequentially coupled states, i.e. D�ib1�ib2�i � � �
bn�iA. This should compete with the direct and largest
tunneling current from donor to acceptor. Having the
tunneling current, the coupling matrix element is
evaluated by Eq. (3.8), as described in Ref. [14].

This procedure is a sort of configuration interaction
calculation, in which only the most important, physically
motivated states are included. The basis set used to
construct multideterminant jDi and jAi states describes
the continuous shift of the charge along the chain
D�ib1�i . . . bn�iA. When the number of states, n, is
large, one can think of a continuous approximation,
jbðsÞi, where s is a coordinate along the bridge. In this
case our basis set in some sense is equivalent to a
coherent states basis.

The dynamic correlation effects described for long-
distance tunneling are certainly very interesting, but the
actual magnitude of these effects in protein systems is
not known at present. Efforts to implement the previ-
ously described scheme are underway in this group. In
a different context, the electron correlation effects on
the coupling matrix element TDA have been examined
recently by Cave and coworkers [32]. These authors
investigated the formal sensitivity of the transfer matrix
element calculated with their GMH approach to the
level of theory used to describe the initial and final wave
functions (Sect. 2.4). Although this approach does not
directly probe the effects described, in both cases the
electron correlations are reflected in the quality of the
wave functions of the tunneling electron, and as such
should formally yield similar results for the transfer
matrix element.

By explicitly specifying the configuration interaction
configurations that modify the tail (or bridge) region of
the tunneling wave functions, and using the tunneling
current method for evaluation of TDA, Eq. (3.8), which
deals specifically with the wave function tails, the pre-
vious scheme should be able to describe explicitly the
dynamic response of the valence electrons in the protein
medium to the tunneling charge.

4.4 Quantum interference effects. Quantized vertices

The wave nature of the transferring electron manifests
itself not only in the electron’s ability to penetrate
classically forbidden barriers, but also in interference
effects. If the electronic coupling is due to several
tunneling paths [28], each of them associated with an
amplitude – a positive or a negative number–then the
total tunneling amplitude, which is the sum of the partial
amplitudes, can be enhanced (constructive interference)
or diminished (destructive interference) depending on
the relative signs of the amplitudes of the individual
paths. Thus, for example, two coupling paths are not
necessarily better than one, in case of destructive

interference [17, 72]. This counterintuitive effect is of
pure quantum nature. Typically the quantum phases, i.e.
the signs of the partial amplitudes, are sensitive to the
nuclear configuration of the system, and therefore
thermal motion of the system would result in averaging
of these effects, on the one hand, and cause fluctuations
of the coupling matrix element, on the other [16].

Another interesting manifestation of the interference
effects is the quantized vortices observed in the tunneling
fluxes [73]. The distribution of the tunneling current in
the peptide chain in the Ru2þ=3þ–(Gly)n–Cu

2þ=1þ system
[59] is shown in Fig. 3. The prominent feature in the flow
is the presence of vortices. It turns out these vortices are
of the same nature as those observed in superfluid he-
lium [74, 75], and in many other quantum systems–
superconductors, plasma, spin systems, wave fronts, and
others [76, 77, 78].

The mathematical nature of these vortices is related
to the nodes of complex wave functions. The phenom-
enon was first described by Dirac [79] in his famous
monopole paper. If we have a complex wave function,
which can be written as

w ¼ q1=2ei/ ; ð4:12Þ

Fig. 3. Vortex structure of the tunneling flow along the polypeptide
molecular wire in the (His)2Cu

þ1=þ2–Cys–(Glu)5–(His)Ruþ3=þ2

system studied in Ref. [59]. The vortices originate at points where
nodal lines of donor and acceptor orbitals intersect
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the current density is related to the gradient of the phase/,

~JJ ~rrð Þ ¼ q ~rrð Þ �h
m

� 	

r/ ~rrð Þ : ð4:13Þ

If complex w happens to be zero at some point, the phase
/ is not defined, and the quantum flux has a vortex
structure at such a point. The vortices are ‘‘quantized’’,
as explained in Ref. [74].

In the tunneling problem, the wave function of the
tunneling particle can be written in the form (cf.
Eq. 3.1), w ~rrð Þ ¼ ½uD

0 ~rrð Þ þ iuA
0 ~rrð Þ�=21=2. where uD

0 ~rrð Þ and
uA
0 ~rrð Þ are donor and acceptor orbitals. Both uD

0 ~rrð Þ and
uA
0 ~rrð Þ have nodes, because they are excited states of the

Hartree–Fock Hamiltonian. The nodes of donor and
acceptor orbitals are surfaces in three-dimensional
space. Intersection of these surfaces with the xy plane are
lines, which are shown in Fig. 3. The crossing points of
the nodal lines of donor and acceptor orbitals then point
to the centers of vortices. In Fig. 3 they are shown as
crossing points of solid and dotted lines, which indicate
nodes of real and imaginary parts of the wave function
of the tunneling electron, respectively.

The intricate structure of the tunneling flow provides
information on how electron tunneling through molec-
ular wires such as polypeptide chains actually occurs.
The stream lines of the tunneling flow in Fig. 3 are the
so-called Bohmian trajectories. The whole ensemble of
such trajectories forming the flow presents a picture
according to Bohm’s hydrodynamic interpretation of
quantum mechanics [60]. For further discussion of the
vortices the reader is referred to Ref. [14].

The analogy with quantum liquids suggests a quali-
tative picture of biological electron tunneling in which
chains of atoms of the protein matrix form a network of
molecular tubes connecting the donor and acceptor, over
which the ‘‘quantum electron liquid’’ can flow. Electrons
can tunnel in such tubes only when there is a fluctua-
tional quantum mechanical resonance between the initial
and final states [10]; thus, although always connected,
these tubes can be thought to open up only infrequently,
allowing gradual (and incoherent) leakage of electrons
from donor to acceptor. The overall process then also
resembles quantum percolation.

4.5 ET or hole transfer? Exchange effects

ET is associated with superexchange coupling via virtual
states in which both donor and acceptor complexes are
oxidized; the hole transfer is due to virtual excited states
in which both donor and acceptor are reduced. In the
latter case a (virtual) hole is present in the protein
medium, while in the former case an additional electron
is present. Of course a combination of ET and hole
transfer is also possible – a process in which virtual
states of both types are involved [11].

Experimentally these two cases are impossible to
distinguish, because in both cases the initial and final
states of the system are the same. Yet, it is interesting to
know which case of coupling is actually operating in real
systems.

An interesting example that provides some insights
into the issue and shows the effects of the many-electron
nature of tunneling transitions is a simple model system,
H–(He–He–. . .–He–He)–Hþ, in which electron tunnel-
ing occurs between two protons, across a chain of three
He atoms [81].

The spatial distribution of the tunneling current along
the molecular axis is displayed in Fig. 4. Notice in Fig. 4
that electron tunneling occurs through the centers of He
atoms. At first sight, this is counterintuitive, because the
1s orbital of He is doubly occupied and the next avail-
able orbital for an additional (tunneling) electron lies
above the vacuum level (electron affinity of He is nega-
tive). That would mean that direct tunneling through He
atoms should be more difficult than through the vac-
uum, and therefore the tunneling electron should try to
avoid He atoms. The stream lines of the current should
then look like the lines of the magnetic field expelled
from a superconducting sphere. Yet the calculation
shows that electrons move right through the centers of
He atoms. What is actually happening is explained by
the exchange of the tunneling electron and electrons with
the same spin in 1s orbitals of He atoms. Such a process
can be also interpreted as a hole transfer.

Fig. 4. The distribution of tunneling current in the H–He–He–He–
Hþ�i Hþ–He–He–He–H transition. Electron tunneling occurs
through centers of He atoms, and involves exchange with He 1s
electrons. The process can also be interpreted as hole transfer. This
many-electron effect is incorporated in the one tunneling orbital
description [80]
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This calculation also indicates that any kind of sub-
stance is likely to be better than a vacuum for electrons
to tunnel through! Water in proteins, for example, can
definitely facilitate the electronic coupling if cavities or
gaps filled with water are present along the tunneling
path [34, 35, 53].

5 Dynamical aspects

We finally briefly mention an interesting issue related to
the effects of the dynamics of the protein structure on
electron tunneling [16, 17, 81]. Protein dynamics is an
integral part of the transfer mechanism, and thermal
motions are needed to bring the donor and acceptor
states into resonance. There are, however, other impor-
tant implications of protein dynamics.

First of all the ET transition state is not unique, and
the resonance at which tunneling occurs may be achieved
at slightly different configurations of the protein matrix.
The tunneling jump itself occurs on a timescale (order of
femto seconds or less) much shorter than that of protein
dynamics; therefore tunneling in different molecules will
occur through slightly different instantaneous configu-
rations of the protein. To take this effect into account in
the rate, one needs to average jTDAj2 over thermal con-
figurations of the protein and to examine the sensitivity
of the pathways. This averaging, at least in some cases,
can perhaps explain the success of phenomenological/
empirical relations for rates of ET in proteins that take
into account only local density of the protein medium
but not their detailed structure [5]. These are static or
inhomogeneous effects.

The second effect is of dynamical nature, and is
somewhat surprising at first sight. Since the tunneling
jump occurs on such a short timescale, the protein
structure can certainly be considered as fixed during the
jump. Yet, protein dynamics can modify the tunneling
event. This occurs via inelastic tunneling [16, 81]. Al-
though the protein structure is fixed on the timescale
of tunneling, owing to the elastic properties of the
medium through which electron propagates, it can
exchange energy with the medium by exciting a vibration
or receiving energy from the medium. In other words,
the tunneling occurs simultaneously with a vibrational
transition of the protein medium.

One can think that the tunneling electron, as it jumps
from atom to atom in the protein, will slightly change
the momenta of these atoms by short ‘‘kicks’’, without
shifting them in space. Thus a tunneling electron can
leave a trace of excitations along the path, and in prin-
ciple this can allow direct observation of the tunneling
paths.

Quantitatively, inelastic tunneling is described by the
probability, Pð�Þ, that the tunneling electron will ex-
change energy, �, with the protein when it makes the
tunneling jump from donor to acceptor. The longer the
distance between donor and acceptor, the larger
the probability that such an energy exchange will occur.
P ð�Þ can be obtained from molecular simulations of the
protein dynamics [81].

There is no doubt that the dynamic effects should be
formally included in the description of electron tunnel-
ing in proteins. The key question, however, is how
important they are in real proteins. This is a question of
practical significance for those who are interested in
absolute rates of ET reactions. At present there is no
consensus on how important the effects described are,
and work is in progress to do both accurate electronic
structure calculations of electronic coupling and
dynamical simulations of realistic models required to
understand these effects. The inelastic tunneling mani-
fests itself in the dependence of the tunneling matrix
element TDA on the configuration of the system [59, 81].

Another interesting question is the sensitivity of the
pathways to slow and large-amplitude configurational
changes of the protein. The question is: does the (dy-
namic) inhomogeneity of the protein structure random-
ize the pathways to an extent that individual paths
determined for a fixed configuration of the protein be-
come meaningless?

The positive answer to the last question would provide
support of Dutton’s concept of the unstructured, effec-
tive dielectric protein medium [5]. The negative answer
would lend more support to Gray’s pathways model [2].
Although it is clear that the answer will depend on the
system, it would be interesting to study individual cases
and clearly show the existence of these two limits. The
issue of the sensitivity of the tunneling paths is related to
the most fundamental biological question, namely whe-
ther or not there are specific, evolutionary optimized
tunneling routes between redox centers in proteins. Fu-
ture work will provide an answer to this and other
intriguing questions in this exciting area.
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